Radians

The diagram shows a sector OAB of a circle, centre O and radius $10 \, \mathrm{cm}$. Angle AOB is θ radians. The point C lies on OB and is such that AC is perpendicular to OB. The region R (shaded in the diagram) is bounded by the arc AB and by the lines AC and CB. The area of R is $22 \, \mathrm{cm}^2$.

(i) Show that $\theta = 0.44 + \sin \theta \cos \theta$.

[4]

(ii) Show that θ lies between 0.9 and 1.0.

[2]

2_.

The diagram shows a sector of a circle with centre O and radius 50 cm. The length of the arc AB is 48 cm.

(i) Find the size, in radians, of angle AOB.

. ГЭТ

(ii) Find the size, in degrees, of angle AOB.

[1]

The diagram shows a sector of a circle with centre O and radius 5 cm. The angle AOB is 0.8 radians. Find

- (i) the length of the arc AB, [1]
- (ii) the area of the segment shaded in the diagram. [4]

2

The diagram shows a sector of a circle with centre C and radius 20 cm. The angle ACB is θ radians. Given that the length of the arc AB is 46 cm, find

- (i) the value of θ , [1]
- (ii) the area of the sector. [2]

The diagram shows a circle with centre C and radius r. The chord AB is such that the angle $A\bar{C}B = \theta$ radians. It is given that the area of the minor segment, shaded in the diagram, is one-fifth of the area of the whole circle.

- (i) Show that $\theta = \frac{2}{5}\pi + \sin \theta$. [4]
- (ii) Use an iteration process based on the equation in part (i), with a starting value of 2, to find the value of θ correct to 1 decimal place. You should state the result of each iteration. [3]